Avatar

Dissertação de mestrado “TweeProfiles4: a weighted multidimensional stream clustering algorithm”

29 Julho 2015
Sem comentários

Título: “TweeProfiles4: a weighted multidimensional stream clustering algorithm”

Autor: Luís Pereira

Orientadores: Prof. Carlos Soares (FEUP)

CursoMestrado Integrado em Engenharia Electrotécnica e Computação da Faculdade de Engenharia da Universidade do Porto

Resumo (PT)
O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquecedora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de processos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados tem recebido um foco significativo recentemente. O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este é um projeto em desenvolvimento que ainda possui muitos aspetos que podem ser melhorados. Uma das recentes melhorias inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos dados, por um método de streaming. O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em primeiro lugar, será proposto um novo algoritmo de clustering para fluxos de dados com o objetivo de melhorar o existente. Para esse efeito será desenvolvido um algoritmo incremental com suporte para fluxos de dados multi-dimensionais. Esta abordagem deve permitir ao utilizador alterar dinamicamente a importância relativa de cada dimensão do processo de clustering. Adicionalmente, a avaliação empírica dos resultados será alvo de melhoramento através da identificação e implementação de medidas adequadas de avaliação dos padrões extraídos. O estudo empírico será realizado através de tweets georreferenciados obtidos pelo SocialBus.

Texto integral: (Brevemente disponível)



Sem comentários